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BERNOULLIAN UTILITIES FOR MULTIPLE-

FACTOR SITUATIONS

Peter C. Fishburn




1. INTRODUCTION

The von Neumann-Morgenstern expected-utility theecry (2, 5, 6, 10, 14]
specifies axloms--for a binary preference relation > on the set P of simple
probability distributions, or gambles p,q,..., on a set X rZ consequences
X,¥,...=—that are necessary and sufficient for the existence of a real-
valued utility fuaction u on X which has the property that, for ail

p,q € P,
p > q 1ff (if and only if) E(u,p) > E(u,q), (@D

where E(u,p) “4f Z{p(x)u(x): x € X}, the expected utility of gamble p.
Within twenty years after the Znitial (1944) publication of the von
Nemann-Morgenstern axioms for Bernoullian expected utility (1), several
investigators, motivated by the very practical concern of developing
tractable techniques for analyzing complex risky decisions, began working
out theories for special forms for the utility function u on X when X is
equal to or is a subset of a product set X1 x x2 XX Xh. One of the

simplest forms for u in this multiple-factor setting is the additive form
u(xl,...,xn) = ul(xl) +..0.0F un(xn), (2)

which was used extensively in nonrisky economic theory in the latter half
of the ninteenth century. With X = Xz X X2 XooaX Xn, a neceassary and

sufficient condition for (2) in the context of (1) was derived by Fishburn
(1] and, independently, by Pollak [12]. Tater, in [3], I note a necessary

and sufficient condition for (2), given (1), when X is an arbitrary subset

of Xl X X2 X, ..% Xn. Lettirg ~ denote indifference, with p ~ q 1f£f not

Wsitaettills « GBSl
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( » 9) & not (q > p), this condition says that p ~ q whenever, for each i,

the marginal distributions on X1 derived from p and q are equal.

Somewhat more general forms for u in the context of (1) with X =
Xl X X2 X, ., X Xn have been axiomatized by Pollak [12], Raiffa [13], Keeney
[7, 8, 9] and Meyer [11]. For n = 2 these forms include (2), u(xl,xz) =
f (x)f (x), ulx ,x)=u(x)+f (x)f (x)and ulzx ,x ) =u (x ) +
117722 1772 PR 2 2 e 2 2
fx(xx)fz(xz)' With n factors one encounters the additive and multiplicative
forms along with related cases, including u(x ;- .,xn) = Z{ci { fi (xi )
) PO S 1
£ (x1 )1 1<r<m 1<t <<d < n} [9], which with n = 3 is
r 'r *
u(x ,x 3x)scf(x)+ct(x)+cf(x)+c £fx)t(x)+c £ (x)
12 3 TR 2 ¢ 2 s 3 4 L. ¢ 2 131 .
f (x)+c £ (x)E(x)+c £ (x)f (x)f (x). The type of axiom used
33 23 2 2 3 3 L2300 L2 2t ey

in the developments cited in this paragraph is as follows. Let I-‘[xi seeerky ]
p r
denote the subsct of P in which the levels of X1 ,...,Xi are fixed at

r
Xy seeesXy respectively, with 1 <...< 1 and r < n. That is, p S P
r
[xi seeesXy ] 1£f the marginal of p on Xi assigns probability 1 to X
1 r s s

for s = 1,...,r. Then, for any two fixed (xi severXy ) and (y1 ,...,yi
r
the restriction of > on P[y1 RERTS ] results {rom the restriction of > on
. X
P[xi ,...,xir] when (xi ,...,xlr) is replaced by (yi ,...,ylr). n other
1 . .
terms, this says that the decision maker’s preference order on gambles

)s
r

defined on the product of a subset of the factors X ,...,Xn with the levels
t

of the other factors fixed (i.e., at Xy o5oees®y ), does not depend on these

r
fixed levels.

Recently [4], I examined an extension of these ideas in the two-factor

case. This extension results in the form

u(x ,x J=u(x)+tu(x)+f (x)f (x), (3)
2 2 ¢ 2 2

> . i
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which incorporates the two-factor forms noted previously as special cases.

In approximate terminology, (3) represents an additive form with independent
multiplicative interaction: the functions u1 and u may be viewed as dealing
with the main effects of x1 and xz; what 1s not accounted for by u] + u2
is handled by the 'residual" flfz. Of course, if u and u in (3) can be
made constant, then the so-called "residual" fxfz tells the whole story with
u taking the straight multiplicative form.

The main purpose of the present paper is to extend (3) to n factors.

In doing this it will be assumed thrcughout that (1) holds with X =

X x Xz Xoaon Xn‘ The particular extension of (3) that is obtained is

2

n
= T .
u(xl,,..,xn) iE,ui(xi) + .{ci ...irfil(xil)...fir(xir). 2<r<nand

(4)

where the c's are constants and uy and fi are real-valued functioans on Xi'

For n = 3, (4) is

u(x ,x ,x)=u(x)+ux)+tux)+c f &) E)+c £ x)f x)
1 2 3 11 2 2 33 121 1 2 2 103 2

53 1
+e¢ f (x)f (x)+c £ (x)tf (x)f (x).
23 2 2 3 2 1237 4 02 2 2 3
Although this form is more complex than some others discussed previously,
it is still tractable from an estimation (scaling) and analysis viewpoint

for smaller n. 1In particular, it requires estimation of two univariate

U

functions for each i plus the constant c's.

The next section presents a two-period income-stream example (n = 2)

to illustrate the potential applicability of (3) when simpler forms cannot
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be used for u (although such simpler forms might yield “"acceptable"

numerical approximations for analysis). The general theory for (4) is

in section 3. Section - crntains the sufficiency proof of the main theorem,
and the final scciion discusses aspects of scaling (estimation) p..:~ ires

for the functions and constants in (4).

2. EXAMPLE

This section illustrates (3) with a two-period income example. It
is supposed that the individual will receive an income xl between $10000
and $30000 at the beginning of the next year (period 1), and that he will
receive an income X between $10000 and $30000 at the beginning of the
year after that (period 2). His praferences for the extreme combinations

are
($30000,$36000) > ($30000,$10000) > ($10000,$30000) > ($10000,$10000),

which shows that if he could have $30000 in one period and $10000 in the
other then he would rather have the $30000 in the first period.
Using a typical scaling procedure for Bernoullian utilities he estimates

thav

($3000r, $10000) ~ [($30000,$30000) with pr. %or ($10000,$10000) with pr. %
(§10000,$30000) ~ [($30000,$30000) with pr.  or ($10000,$10000) with pr. 3.

Buawiim st o s

Given $10000 for sure in period 1, he is risk-averse over x in period 2,

2
but given $30000 in period 1 he is risk-neutral over x2 in perind 2. Like- 3
wise, with a guarantee of $10000 in period 2, he 1s risk-averse over X in 3

1

period 1, but given $30000 in period 2 he is risk~neutral over x in period 1.
1




In specifying a utility function on [$10000,$30000] x [$10000,$30000]
which has these properties and has the form shown in (3), we uge the

following linear transformations for notational convenience:
o= (x1 - $10000) /$20000 B = (x2 - $10000)/$20000.

For analytical convenience we asgume that u on the (a,B) pairs in [0,1] X

[0,1] is given by

/2 1/2

u(a,8) = 1.80 7% + 1.68"/% - [1.8a72 - .80][1.68'7% - .68].  (5)

This has the form of (3) and gives u(l,l) = 2.4, u{(l,0) = 1.8, u{0,1) = 1.6
and u(0,0) = 0, which satisfies the two indifference expressions written
above since u{1,0) = u(1,1) +7u(0,0) and u(0,1) = Zu(1,1) +3u(0,0).

Figure 1 shows conditional utility curves for o in period 1, given fixed
g in pericd 2, and conditional utility curves for B in period 2, given fixed
1/2

o in period 1. In the period 1 diagram the lowest curve is u(ca,0) = 1.8c

for B = 0 [$10000 in period 2], and the highest curve is u(o,l) = 1.6 + .8c

Figure 1 about here

for 8 = 1 [$30000 in period 2]. As one progresses from the lowest pericd 1
curve to the highest, the period 1 conditional functions becomes increasingly
less risk-averse, with the highest curve being risk-neutral. Similar
remarks apply to the period 2 curves.

The main point of this example is that the intuitively-reasonable

conditional utility curves in the two pilctures of Figure 1 cannot be generated

by any of the specializations of (3) mentioned in section 1 (i.e., additive,
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multiplicative, ul + fxfz’ and u2 + fxfz)’ whereas they arz in fact generated
by (3) in the specific form of (5). Thus (3), or its extension (4) to n
factors, permits more realistic characterizations of multiple-factor utility
functions in terms of combinations of functions on the individual factors.

We now turn to the theory behind (4).

3. THEORY

Throughout, it is assumed that (1) holds with X = X1 X X2 X, eX Xn.

In developing necessary and sufficient conditions for (4) we shall let Pi

be the set of simple probability distributions on Xi, with members Pyslyrecee

i
In addition, x~ denotes an n - 1 tuple (xl,...,xi_l,xi+
i

i i
X Xl X,.0X Xi_1 X Xi+1 X, .X Xn. The pailr (x ,pi) in X* % Pi can also

be viewed as a gamble p € P whose marginal for Xi is Py and which has
marginals for the Xj for j # 1 which assign probability 1 to the x;.

1s, (xi,pi) 1s in P[x1].

l,...,xn) in the set

That

In Keeney's terms [9], Xi is "utility independent" of Xi iff
i i i i i 4 i
£ P,
[G7py) > (x7hq,) A£E (y7,p ) > (v7,q,)] for all x7,y" € X and p,,q, €7,

This says that the order on P, conditional on a fixed xi does not depend

i

on the fixed xi. When Xi is "utility independent" of Xi for 1 = 1,...,n,

Keeney notes [9, p. 284] that u on X takes the form u(xl,...,xn) =
E{ci "'irfix(xi )...fi (xi ): 1<r<n,l<i «<,,.< i j_n}; which 1is

r r
obtainable from (4) when uy therein is replaced by cifi'

To obtain the full form of (4), in which the u, can be very different

i
chan the fi, we require a generalization of the "utility independent” idea.




This generalization is accomplished by using two, rather than one, condition-
ing values of xt in a 50-50 lottery formulation. Letting %p + %q represent

the gamble with probability % for p and probability %-for q (the one of p
and q that results will then be played), or equivalently the distribution
in P that assigns probability %p(x) + %q(x) to each x € X, we define the

doubly-conditioned order > g4 Om Pi by
Xy

1, 1 1, 1 1,1 1,1

This can be visualized by a standard array >f two compound gambles p and gq

as follows:

Heads Tails
i i

p (x7,py) (y":q))
i i

q (x >qi) (y ,Pi)

Presuming that Heads and Talls are believed to be equally likely, p refpresents
-% xi,pi) + %(yi,qi), which gives (xi,pi) 1if Heads obtsins and (yi,qi) if

Tails obtains. Likewise, q represents %(xi,qi) +-%(yi,pi), which is the

scme as p except that Py and 9 have been intercianged. Definition (6)

says that Py > {1
Xy
to the se-zond row, or if p » q. If indifference p ~ g should hold for all

9y if and only if the first row of the array is preferred

possible arrays of the foregoing form (1 = 1,...,n), then u has the
additive form (2) [1].

According to the definition, pi >xiyi qi
- {1 is the converse or dual or > . (In terms of the array, interchange

Yy X xiYi

iff 1y >yixi P> 80 that

)
b
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the two columns in the matrix.) In addition, with ¢ the empty set,

> 11" ¢ for all xi € Xi. That is, if yi in the array or in (6) is
XX
raplaced by xi, thenp = q so that p~ q, or Py~y 4 9 for all Pysqy € Pi'
X X
To expose the desired axioms for (4) on the basis of the > , We

RO N |
Xy
woik momentarily with i = 1. Suppcse (4) holds and there exist

p ,q € P such that p > q for some x',y! € X!. Then, using (1) and
1’ 1 1 ylgt 1
(4) on the > expression of (6) we obtain

1 . ;
(£, - £ (a)1Ee, [, Gy )ecefy () - £ () )eeofy (33 )1 ;
1 r 1 1 r r 1 1 r T !

lf_rf_n—l,2_<_il<...<irf_n}]>0,
where fx(px) = Epl(xl)fl(xl) and similarly for fl(ql). The important
aspect of this expression is that the terms in f1 are separated from the

terms in the other fi' Letting g(x',y!) represent the bracketted sum in

the inequality, we rewrite it as
£ - f Lyh) > o.
{ 1(91) 1(cl,l)]g(x Y)
Because of the way this was developed, we have

> f - f P yly > ;
P78 L5 () - £ @)IeGy >0, ‘
y

for all pl,q1 € Pl. Now when x! here 1s replaced by some other z! € X},

exactliy one of the following three things must occur:

1. g(z',y!) has the same sign as g(x',y!): then it must be true, by

a simple analysis of signs, that > = >
zly! x'y

we




Sl =
5

2. g(z!,y!) has the opposite sign from the sign of g(x‘,yl): then it

must be true that > is the converse or dual of > » Or > n > :
2ty xly! 2ly! vix!
3. g(zl,yl) equals zero, in which case p ~ q forallp ,q €P,
1ol 1 1’0 1
so that > = ¢,
zty!

To summarize: if (4) holds and if p > q for some p ,q € P
1oyl 1 1’1 Ty
then, for every zl_G xt, > € {» > ,0}. A similar conclusion
ziy! ®yl yix!
arises when 1 = 1 18 replaced by any 1 > 1.

# ¢ for some xi,y1 € Xi, then for some >

AXTOM 1.4. IE> L qon
Xy 1 . X'y
P, which is nonempty, > € {> 2> ,0} for each z~ € X".
i i1i ii1” 14 —_—
z'y Xy yx

As just demonstrated, Axiom 1.1 is necessary for (4), for 1 = 1,...,n.
As the following theorem states, Axioms 1.1,...,l.n together are sufficient

for (4). The proof of sufficiency is given in the next section.

THEOREM 1. There exist real-valued functions uy and fi on Xi for

i=1,...,n and constants ¢ which satisfy (4) for all x € X if,

i “'i
1 r
and only if, Axiom 1.1 holds for 1 = 1,...,n. U
4. PROOV

For the sufficiency proof of Theorem 1, assume that Axioms 1.1,...,l.n

hold. Then, according to [4], there exist real-valued functions uy and fi

on Xi, and real-valued functions v, and 81 on Xi, such that, for all x € X,

i

W) =g () + v, D+ £ g D 1= 1., D




B e ‘ffo,%s&?ﬁgé
A 3 = v x
.

.

1

Without loss in generality‘(but perhaps involving an origin shift for u), we
can suppose that there exists an x° = (xt,.:.,x;) in X such that all functions
in (7) equal zero at x°. (See [4].)

If fi‘in (7) is multiplied by any nonzero constang and gy is multiplied
by the reciprocal of this constant then (7) 1s unchanged. Moreover, if
(7) 1is additive for some i in the sense that u(x)!= ui(xi) + vi(xi), then
we can set 8y £ 0 and define £, in any waylwe please with fi(x;) = (.

i

Hence, in any event we can select an xi € Xi for each 1 and require that

fi(x;) = 1, assuming of course that Xi has at least two elemernts. (If

Xi_were a singleton it would presumably be omitted from the produc: set i
or incorporated into sore other X,.)

|
To arrive at (4) from (7) we proceed through the equations in (7) in

' !
a systematic manner, beginning with 1 = },2, then adding the next 1 in each
new step.

Using (7) with 1 = 1 and 1 = 2 and setting x1 = xg we get

0 0
V (X 500 =u (x) +v (x ceesX ) + £ (x . e .
1( 5? :xn) 2( 2) 2( 19x39 ’ n) 2( 2)82(X1 X3, ,xn)
Likewise, on setting x = x* we get u (x*) + v (x ,... + X seeeyX ) =
> ing x = x} 8 1( 1) 1( )’ X ) gx( STER »)
L (x )+ v (x*,x ,..0x ) + £ (x)g (x¥,x ,...,%x ), which on subgtitution
2 2 2 1 3 n 2 2772717 3 n

for v1 as displayed above gives

0
(X yoeayX ) = v (X*,X 5000, ) =V (X" ,%X 500.9% )
81 2’ } ] n) 2 1’ 3' » n 2 13 3’ ] n

* - 0 - ®) .,
+ fz(xz)[gz(xl,xs,..-,xn) gz(xl.xs,..~.xn)] “1(x1)

Thus, in these expressions for v1 and 81’ x_has been effectively nuLlified

(by fixing it at x: or xt) and x2 has been "separated" from (xa,...,xn).




=
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Replacement in u(x) = ulixl) + vl(xz,...,xn) + fl(xl)gl(xz,...,xn) of the
foregoing expressions for vl and g1 is the first step in proceeding towards
(4).

The next step is to add in (7) for 1 = 3 in breaking down the v, and
g2 expresgions on the right sides of the equations given above for v1 and
gl. {1t may be unclear at this point as to the fate of - ul(x?) at the
end of the 81 expression. In point of fact, ul(x?) = u(xf,xz,...,x;),
and it cancels out in the final step of the proof.) With a € {0,%}, the

0

equivalence of (7) for 1 = 2,3 with x2 set at x2 therein gives

a a o
V (X X 53oeeyX ) = U (X ) + vV (X ,X ,X 50005%
z( 177377 " 33 3172 n)

+ f 8 x%% ,... .
3(){3)83 (xl )xz )x“ s )xn)

Subtracting this for a = § from a = * for substitution in g, glves
0 .
vz(xf,xs,...,xn) - vz(xl,x3,...,xn) = va(x?,xz,x“,...,xn) - v3(x:,xz,x“,...,
. % 0 _ 0 0 i C oo
xn) + fs(xa)[ga(xl,xz,x“,...,xn) ga(xl,xz,x“,...,xn)]. Using i = 2,3
in (7) with x, set at x:, and using the foregoing expression for vz(x?,

X 5eee3X we obtain
3’ )n)’

a a a g
K K geeesK ) BV (X ,X%,X 50000% ) = V (X 5,27 ,X 5000,X
82( 1: 3’ ’ n) 3( .’ 2%, ’ n) 3( 1: 2) lo’ ’ n)
+ £ {x){g {xa,x*,x sesesX ) ~ (xa,xo,x soees® )]
2 3 31 27y n 3 51T 1

-u (x%),
2 2

o

The general pattern sheuld be clear at this point. When we introduce

expression i from (7) into the process, we get

e e e

[P

i




a a a a

i-2 i-2 ¢
l(xl ,.‘.,Yi -2 ,xi,-v.' ) = L (A ) * v (x ,oun,xj_z ,xi&l,xi+1’ooc,xn>
a a
3 1 i-2 5 5
+ fi(xi,gi(xl per ey y aXy aXig ser X )
& a a a
1 1-2 - 1 i-2
gi_l(x1 seees Xy, ,xi,...,xn) vj(x1 seeesXy T, ’£i~1’xi+1"°"xn)
a a
1 i-2 g
- vi(xl ,...,xi_z Xi_l,xi+1,.n.,xn)
a TN .
+ £ (x ){gi(x seeeaXy xg_l,xi+l,...,xn)
a ai~2

R 1 0 1
bi(x1 seses¥y, ,xi_‘,xi+1,...,xn);

- %
ui_l(hi_l)’

where a, € {0,*} for esch j <41 -2, This continues through i = n, at

]
which point we have

a a__, , a a2
n_x(x see X, ,xn) = un\xn) + vn(xl seeesX , ,xn_l)
a 8,2
+ fn(xn)gn(x1 sererX ,xn_x)
a a ., a a _, a P
gnml(x1 veres¥ ,xn} = vn(x1 er ¥ ,xg_l) - vn(}:1 seresX ,xn_l)
a a _, a
(x )M (s, (x seeeaX ,x;_l) - gn(x1 seees
a
xnfzz'x;~x)]
-u (x; l).

Uging (7} with 4 = n, the Vi and 8, terms on the right of these expressions
are replaced with definite u values as follows:

a a a

P n~1 fy ) n-i g
EAR S IEEEY.S © a\xX veegX X
n" 1 ’ L WY ) \ 1 s "h-1 ? n)
a1 n 1 81 an 1 81 an 1 0
N - x -
X seeyX = ulx oo X X - u(x eseyX X
gn( 1 ’ 1401 ; ( 1 ’ »%q-1 ? n) ( \ ’ " hey ? n)

- u (x*).
n( n)
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Beglaning with u(x) = u (x) +v (x') + £ (x)g (x') =u (x) +
0 : 0 *
[uz(xz) + vz(xl,xa,...,xn) + fl(xz)gz(xl,xa,...,xn)] + fl(xl)[vz(xl,x ,...,xn)

- 0 ® - 0 - *)1 =
vz(xlrxa,---,xn) + fz(xz)[gz(xl,xs,...,xn) 82(X1,X seeesX )] “1(x1)‘

s+ induction on k shows that (with * replaced by 1 for analytical

convenience)

u(x) = ialui(xi) + vk(x1""’xk-1’xk+l""’xn) - iulfi(xi)ui(xi)
r+la a
i 1 -1 .
+ Z{fil(xil)...fir(xir)[z{(-l) vk(x1 sereaXy ) ’xk+l”'°’xn)'

a = 01f 1 ¢ {11,...,1r}, ay € {0,1} if 1 € {11,...,1r}}]:

18r<k 11 <.<i <k}

3 [+} 4
+ Lk(xk)[gk(xla"'ixk_x ,xk_*_l.u-,xn) + Z{fil<xil)...fi (Xi )

r °r
r+ia a
[z{(¢-1) igk(xll,...,xzf:l,xk+l,...,xn): a, = 0 if

1¢{1,...,4},a, €{0,1} if1€{1,...,4 }}]: 1<r <Kk,
1 T i 1 T —

1<1 <...<1 <k}l
R r

Setting k = n here and using (8) and (9) we get

r+ia

) = % u(x,) - TE (x)u, &)+ HE (&, ).t (& VE((-1) 1
A R L A A 1 xil et R

a
1 n-! _o,,. - {
Xy %)t a; =01f1¢ {11,...,1r}, a, € {0,1}

otherwise}]: 1<r <n, 1 <1 <.<d <)

TR AR o I B ey

W




r+£ai a1 n-1
+ fn(xn)[Z{fi (x1 )...fi (xi YIZ{(-1) [u(x1 sreesX ,xn) -
1 1 r 'r
ax an~1 0 1
u(xl veeosX ,xn) - un(xn)]: a, = 01f 1 € {11""’ir}’

a, € {0,1} otherwise}]: 1 f€r<n, 1 f_il <.,..< ir < n}].

The third main sum here with r = 1 and 1 = ir < n gives the subterm

fi(xi)u(xg,...,x

0 1,0 0 - 1
i-l’xi’xi+1""’xn)’ which cancels with fi(xi)ui(xi)

from the second main sum, Within the last main sum, we find the expression
r+£ai
- Z{(-1) u (x}): a
B ora
v, () (1T (-1

€ {0,1} otherwise} =

Za1

=0 if 1 ¢ {11,...,1r}, ay
..}

1
i.

This equals zero since IZ{(-1) ~:...} = 0.

What remains then in the above form for u(x) is precisely (4), with ¢y
1

A §
in (4) specified by
r+la

1
g =D
r

a a

ulx },...,x n): a, = 0 if
1 n

i

i¢ {11”"’ir}’ ay € {0,1} otherwise}. (10.

5. SCALING

Not only does the preceding proof establish Theorem 1, but it shows

how one can determine the u, and £

1 1 functions along with the constants

r

¢4

1 in (4). The purpose of this section 18 to clarify aspects of the

r

1

scaling procedure.

As in the latter part of the preceding section, we use

the superscript 1 {in the sense of x! = (x:,...,x;) in X rather than to denote
an element in X!.

As 1n the proof, we fix an element x° € X and require all functions,

0

.

including u, to equal zero at x This is quite permissible and fixes an

origin for each function. Using (7) it follows that




0 0 0 0
ui(xi) = u(xl,...,xi_l,xi,xi+1,...,xn)

- 0
vi(xl"'°’xi-1’xi+1"°°’xn) u(x‘,...,xi_l,xi,xi+l,...,xn).

In considering £, we distinguish two cases. The first of these

i
arises when (7) is additive in 1 in the sense that

u(x) = ui(xi) + vi(xl""’xi—l’xi+1"°"xn)' (1D

Although we used an artifice of defining fi(xt) = fi(x;) = 1 in this case
in the preceding proof, it 18 quite all right to take fi Z 0 when (11)
holds. In fact, fi can be defined in any way here since, as is easily seen

with the uge of (11), every c for (4), as specified by (10), which

i’..i
1 b

includes i among 11"'ir equals zexro. Hence £ terms in (4) which include

fi vaanish from (4) when (11) holds. Moreover, we need not worry about
selecting an xi = x; element in this case for estimating the nonzero

c coefficients by (10).
To summarize the first case: when (11) holds, or equivalently

when > 414" ¢ for all xi,yi € Xi, only u, as specified above needs to
Xy

i
be estimsted.

The second case arises when (11) is false. In this case there is

an (xfi),...,xiiz,xi,xiiz,...,xéi)) in X such that
(1) 1) @) 1) (1) (1)
fi(x;)gi(xl TEEFE HETL HAETRETT ) = u(x1 ,...,xli,...,xn )

(12)

0 1 0 (1) 0 ¢9)
- u(xl,...,xi,...,xn) - u(:-.l TEERE SERERTTN ) # 0.

Thus the 8y term 1s nonzero. Dividing both sides by this term and replacing

1
Xy by X, we have
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fi(xi) = Ai[u(xfi),...,xi,...,xéi)) - ui(xi) - u(xfi),-c~,xg,---,x§i))]

where, in line with the preceding proof, Ai is determined by the requirement

1y o 1.
that fi(xi) 1:

Ai = [u(xfi),...,xi,...,xéi)) - u(x:,...,x;,...,x;)
(1) 0 1)y,?
- u(x1 TERRE STTRTRE N )] .

Finally, the cy 1 coefficients for (4) for those 11"'1r that includes
o * 9 r

1
no i for which (11) holds, are determined by (10) using x° and the xi

vt . wa——- "

as defined in this paragraph.

If there are exactly k values of i for which (11) is falge [k cannot

equal 1, for if n - 1 of the 1 satisfy (11) then the other i satisfies (11)

also] then, in addition to the n uy functions we need to estimate k fi

(1) (1)
1

functions, each of which requires determination of u(x SEEFL NIET I

xii?,...,xﬁi)) in addition to ui(xi). To complete the specification of £
d

i’
the constant values u(x(i),...,xl,...,x(i)) and u(x(i),...,xo,...,x(i))
1 1 n 1 i n
are required along with u(xg,...,xi,...,x;), which will be one of the 2k
a a
u(xll,...,xnn) values required for the ¢ in (10).

i...4
1 T

The estimation procedure simplies somewhat if for each of the k 1 values

for which (11) fails it is possible to select the x; element in such a way i

that, with I = {1: (11) is false for i}, the right side of (12) is nonzerc |

vwhen x§i) = x; for each j € I - {1} and x§i) = x; for each § € I. For

example, if this can be done when k = n ({.e., when (7) 1is "additive" for

no i) we get




ui(xi) = u(x:,...,x;_l,xi,xg+‘,...,x;)

- 1 1 1 1y _
fi(xi) Ai[u(xl,...,xi_l,xi,xi+1,...,xn) ui(xi)

1 1 Y 1 1
- e X veeyX
U(xl > ’xi—l ’ i’xi+1 ’ ’ n)]

-1
Ai = [u(x}) - u(x:,...,x;,...,xg) - u(xi,...,xz,...,x;)]

with the ¢y 1 determined from (10) using %x° and x!. In this situation
l‘.tr
we nead to estimate the two univariace functions u(xg,...,xi,...,x;) and
a a

u(x:,...,xi,...,x;) for zacn i along with the 2" values of u(xl‘,...,xnn)

[with u(x’} = 0].

we wufm»wymwtu%ﬂmwmw%%mw%&" )

%

"

O Kb T b
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